Приклади розв'язання контрольних задач

Варіант 1

1. Які властивості має стаціонарний процес? (3 бали)
2. При якій умові $M A(1)$-процес є стаціонарним? При якій умові він може бути перетворений? (7 балів)
3. При якому припущенні $A R(1)$-процес можна представити як збіжний $M A$ процес. Обчислить для цього випадку математичне сподівання, дисперсію, автоковаріацію y_{t}. (7 балів)
4. Чи є $A R(2)$-процес виду $y_{t}=y_{t-1}+0.75 y_{t-2}+\varepsilon_{t}$, де $\varepsilon_{t}-$ "білий шум", стаціонарним? (3 бали)
5. Нехай $\left\{Y_{T}\right\}$ - деякий $A R$-процес. Як визначити оптимальним чином його порядок p ? (5 балів)

Розв'язок

1. Стаціонарний процес повинен мати постійні та скінченні математичні сподівання, дисперсію, коваріацію всіх порядків.
2. Знайдемо числові характеристики процесу:

$$
\left.\begin{array}{l}
E y_{t}=\mu, \quad \forall t, \\
\begin{array}{rl}
\operatorname{var}\left(y_{t}\right) & =E\left(\varepsilon_{t}+\theta \varepsilon_{t-1}\right)^{2}=E\left(\varepsilon_{t}^{2}+2 \theta \varepsilon_{t} \varepsilon_{t-1}+\theta^{2} \varepsilon_{t-1}^{2}\right)= \\
& =\sigma^{2}+0+\theta^{2} \sigma^{2}=\sigma^{2}\left(1+\theta^{2}\right)
\end{array} \\
\left.\begin{array}{rl}
\operatorname{cov}\left(y_{t},\right. & \left.y_{t-j}\right)
\end{array}\right)=E\left(\left(\varepsilon_{t}+\theta \varepsilon_{t-1}\right)\left(\varepsilon_{t-j}+\theta \varepsilon_{t-j-1}\right)\right)= \\
\\
\quad=E\left(\varepsilon_{t} \varepsilon_{t-j}+\theta \varepsilon_{t} \varepsilon_{t-j-1}+\theta \varepsilon_{t-1} \varepsilon_{t-j}+\theta^{2} \theta \varepsilon_{t-1} \varepsilon_{t-j-1}\right)
\end{array}\right\} .
$$

Таким чином $M A(1)$-процес є стаціонарним, оскільки він має скінченні математичне сподівання, дисперсію, та коваріацію.

Дослідимо, при якій умові процес є перетворювальним.

$$
\begin{aligned}
\varepsilon_{t} & =y_{t}-\mu-\theta \varepsilon_{t-1}=y_{t}-\mu-\theta\left(y_{t-1}-\mu-\theta \varepsilon_{t-2}\right)= \\
& =y_{t}-\theta y_{t-1}-\mu+\theta \mu+\theta^{2} \varepsilon_{t-2}=\ldots \\
\varepsilon_{t} & =y_{t}-\mu-\sum_{i=1}^{\infty} \theta^{i}\left(y_{t-i}-\mu\right) .
\end{aligned}
$$

Оскільки процес ε_{t} є "білим шумом", то $\lim _{i \rightarrow \infty} \theta^{i} \varepsilon_{t-1}=0$, що можливо лише при $|\theta|<1$. Таким чином, $M A(1)$-процес можна перетворити у $A R(\infty)$-процес за умови $|\theta|<1$.
3. Представимо $A R(1)$-процес у вигляді $M A(\infty)$-процесу:

$$
\begin{aligned}
y_{t} & =c+\varphi y_{t-1}+\varepsilon_{t}=c+\varphi\left(c+\varphi y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t}=\ldots= \\
& =c \sum_{i=0}^{\infty} \varphi^{i}+\sum_{i=0}^{\infty} \varphi^{i} \varepsilon_{t-i}=\frac{c}{1-\varphi}+\sum_{i=0}^{\infty} \varphi^{i} \varepsilon_{t-i}
\end{aligned}
$$

Очевидно, що цей процес буде збіжним, якщо $|\varphi|<1$.
Знайдемо числові характеристики цього процесу:

$$
\begin{aligned}
& E\left(y_{t}\right)=\frac{c}{1-\varphi} \\
& \begin{aligned}
& \operatorname{var}\left(y_{t}\right)=E\left(y_{t}-\frac{c}{1-\varphi}\right)^{2}=E\left(\sum_{i=0}^{\infty} \varphi^{i} \varepsilon_{t-i}\right)^{2}=\sum_{i=0}^{\infty}\left(\varphi^{i}\right)^{2} E\left(\varepsilon_{t-i}\right)^{2}=\frac{1}{1-\varphi^{2}} \sigma^{2} . \\
& \operatorname{cov}\left(y_{t}, \quad y_{t-j}\right)=E\left(\left(y_{t}-E y_{t}\right)\left(y_{t-j}-E y_{t-j}\right)\right)=E\left(\sum_{i=0}^{\infty} \varphi^{i} \varepsilon_{t-i}\right)\left(\sum_{i=0}^{\infty} \varphi^{i+j} \varepsilon_{t-i-j}\right)= \\
&=\sum_{i=0}^{\infty} \varphi^{i+j} \cdot \varphi^{i} E\left(\varepsilon_{t-i}, \quad \varepsilon_{t-i-j}\right)=\sigma^{2} \sum_{i=0}^{\infty} \varphi^{i^{2}} \varphi^{j}=\sigma^{2} \frac{\varphi^{j}}{1-\varphi^{2}} .
\end{aligned}
\end{aligned}
$$

4. $y_{t}=y_{t-1}+0.75 y_{t-2}+\varepsilon_{t},\left(1-B-0.75 B^{2}\right) y_{t}=\varepsilon_{t}$. Нам треба з'ясувати, чи є у рівняння $1-z-0.75 z^{2}=0$ хоча б один корінь, за абсолютною величиною менший за одиницю.
$z_{1}=-2<-1, z_{2}=\frac{2}{3}<1$. Таким чином, оскільки не всі корені за абсолютною величиною більші за одиницю, то процес не є стаціонарним.
5. Порядок $A R(p)$-процесу визначається при аналізі часткової функції автокореляції. Якщо графік цієї функції затухає після p коливань, то найбільш імовірно, що аналізується $A R(p)$-процес. При цьому не можна забувати, що якщо на графіку функції автокореляції є спад, то процес можна ідентифікувати як деякий $M A(q)$ або $\operatorname{ARMA}(p, q)$-процес. На стадії діагностики, можна також перевірити, чи не є більш адекватною модель $A R(p-1)$ або $A R(p+1)$. Після порівняння числових критеріїв, обирається оптимальне значення p^{*}.

Варіант 2

1. Обчислити математичне сподівання процесу випадкового блукання без тренду. (2 бали)
2. Як виглядає для перетворюваного $M A(2)$-процесу оптимальна формула прогнозу для $y_{t+\tau}$, якщо прогноз робиться у період t на основі відомих $\varepsilon_{t-j}, j \geq 0$? Обчислити формулу для помилки прогнозування, а також середню квадратичну похибку для $\tau>0$. (7 балів)
3. Припустимо, що всі ε_{t} - невідомі. Як на основі відомих y_{t} зробити прогноз на період $\tau=T+1$? (6 балів)
4. Як треба робити прогноз $y_{t+\tau}$, коли $\left\{y_{t}\right\}$ є деяким $\operatorname{AR}(2)$-процесом? (5 балів)
5. Нехай $\left\{y_{t}\right\}$ має чіткий трендовий компонент. Як провести тест гіпотези про те, що $\left\{y_{t}\right\}$ - "випадкове блукання"? (5 балів)

Розв'язок

1. Для процесу випадкового блукання без тренду $y_{t}=\beta_{0}+\beta_{1} y_{t-1}+\varepsilon_{t}$ необхідно знайти математичне сподівання, дисперсію і коваріацію.

$$
\mu=E y_{t}=E\left(\beta_{0}+\beta_{1} y_{t-1}+\varepsilon_{t}\right)=\beta_{0}+\beta_{1} E y_{t-1}=\beta_{0}+\beta_{1} E y_{t}=\beta_{0}+\beta_{1} \mu,
$$

тобто

$$
\mu=\frac{\beta_{0}}{1-\beta_{1}} .
$$

2. Для $M A(2)$-процесу $y_{t}=\mu+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}$ прогноз має вигляд

$$
\hat{y}_{t+\tau \mid t}=\left\{\begin{array}{l}
\mu+\theta_{1} \varepsilon_{t}+\theta_{2} \varepsilon_{t-1}, \quad \tau=1, \\
\mu+\theta_{1} \varepsilon_{t}, \quad \tau=2 \\
\mu, \tau>2
\end{array}\right.
$$

Прогнозна помилка становить

$$
y_{t+\tau}-\hat{y}_{t+\tau}=\left\{\begin{array}{l}
\varepsilon_{t+1}, \quad \tau=1, \\
\varepsilon_{t+2}+\theta_{1} \varepsilon_{t+1}, \quad \tau=2, \\
\varepsilon_{t+\tau}+\theta_{1} \varepsilon_{t+\tau-1}, \quad \tau>2
\end{array}\right.
$$

Тоді середньоквадратична похибка

$$
M S E=E\left(y_{t+\tau}-\hat{y}_{t+\tau}\right)^{2}=\left\{\begin{array}{l}
\sigma^{2}, \quad \tau=1, \\
\sigma^{2}\left(1+\theta_{1}^{2}\right), \quad \tau=2, \\
\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right), \quad \tau>2 .
\end{array}\right.
$$

3. Оскільки всі ε_{t} - невідомі, потрібно їх оцінити:

$$
\hat{\varepsilon}_{t}=y_{t}-\mu-\theta_{1} \hat{\varepsilon}_{t-1}-\theta_{2} \hat{\varepsilon}_{t-2},
$$

де
$\hat{\varepsilon}_{0}=\hat{\varepsilon}_{-1}=0$.
Тоді прогноз на один період становитиме:

$$
\hat{y}_{t+1 \mid t}=\mu+\theta_{1} \hat{\varepsilon}_{t}+\theta_{2} \hat{\varepsilon}_{t-1} .
$$

4. Для прогнозування $A R(2)$ процесу необхідно використати закон ітеративних сподівань:

$$
\hat{y}_{t+\tau \mid t}=\mu+\varphi_{1}\left(\hat{y}_{t+\tau-1 \mid t}-\mu\right)+\varphi_{2}\left(\hat{y}_{t+\tau-2 \mid t}-\mu\right) .
$$

Починаючи від $\tau=1$, обраховуємо за допомогою відомих y_{t} та y_{t-1} оцінки прогнозів на наступні періоди.
5. Гіпотеза може бути протестована за допомогою такої моделі:

$$
y_{t}=\mu+\beta t+\rho y_{t-1}+u_{t} .
$$

Тоді
$H^{0}: \beta=0, \rho=1$.
Для перевірки цієї гіпотези необхідно оцінити початкову модель за методом найменших квадратів, звідки отримуємо t-статистику для коефіцієнта β. Цю t-статистику порівнюємо зі значенням $\hat{\tau}_{\beta_{\tau}}$ із таблиць ДіккеяФуллера для відповідного числа спостережень T та рівня надійності α. Якщо табличне значення більше практичного, то гіпотеза H^{0} приймається, в протилежному випадку відхиляється.

