Семінар 5. VAR моделі

1. Імпорт даних

Дані містяться у вашому робочому файлі.

dlind: темп зростання виробництва промислової продукції, % unem: рівень безробіття, %

2. Перевірка на причинність за Грейнджером

(1) Відкрийте змінні dlind і unem як групу.

(2) Проведіть тести на каузальність до 12 лагів включно (VIEW/GRANGER CAUSALITY...). Зробіть висновки.

3. Визначення порядку інтеграції змінних

(1) Визначіть порядок інтеграції для кожної змінної на основі розширеного критерію Дікі-Фуллера і критерія Філліпса-Перрона (див. семінар 1)

4. Оцінка VAR моделі у приведеній формі

(1) Оцінюємо наступну веторну авторегресійну (VAR) модель з двома змінними і двома лагами:

$$\underbrace{\begin{pmatrix} \Delta \ln(IND_{t}) \\ UR_{t} \\ X_{t} \end{pmatrix}}_{X_{t}} = \underbrace{\begin{pmatrix} a_{1,11} & a_{1,12} \\ a_{1,21} & a_{1,22} \\ A_{t} \\ \end{pmatrix}}_{A_{t}} \underbrace{\begin{pmatrix} \Delta \ln(IND_{t-1}) \\ UR_{t-1} \\ X_{t-1} \\ \end{pmatrix}}_{X_{t-1}} + \underbrace{\begin{pmatrix} a_{2,11} & a_{2,12} \\ a_{2,21} & a_{2,22} \\ A_{2} \\ \end{pmatrix}}_{A_{2}} \underbrace{\begin{pmatrix} \Delta \ln(IND_{t-2}) \\ UR_{t-2} \\ X_{t-2} \\ \end{pmatrix}}_{X_{t-2}} + \underbrace{\begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \\ \varepsilon_{2,t} \\ \varepsilon_{t} \\ \varepsilon_{$$

Клік на QUICK/ESTIMATE VAR, відкривається діалог. Заповнюємо поля змінних і лагового інтервалу:

asics Cointegration VEC Re VAR Type <u>Unrestricted VAR</u> <u>Vector Error Correction</u>	strictions Endogenous Variables
Estimation Sample	Lag Intervals for Endogenous: 1 2 Exogenous Variables
1997m01 2006m12	

(2) Вибираємо кількість лагів для VAR моделі: VIEW/LAG STRUCTURE/LAG LENGTH CRITERIA (включаємо 12 лагів). Вибираємо таку кількість лагів, при якій значення критерієв найменше.

5. Перевірка властивостей VAR моделі

- (1) Корисним є початок роботи з VAR моделлю з мінімально можливою кількістю лагів (на основі інформаційних критеріїв) і перевірка залишків моделі на стаціонарність, нормальність, автокорреляцію, а також перевірка моделі на стабільність.
- (2) Для перевірки на нормальнітсь залишків виберіть у вікні VAR моделі: VIEW/RESIDUALS TESTS/NORMALITY TEST...
- (3) Для перевірки на автокорреляцію залишків виберіть у вікні VAR моделі: VIEW/RESIDUALS TESTS/PORTMANTEAU AUTOCORRELATION TEST... або VIEW/RESIDUALS TESTS/AUTOCORRELATION AM TEST...
- (4) Для перевірки залишків на стаціонарність виберіть у вікні VAR моделі PROC/MAKE RESIDUAL SERIES... (краще зберігати залишки під новими іменами). Потім для кожного із залишків застосуйте тест на одиничний корень (при цьому необхідно використовувати ADF тест без включення константи чи/або тренду).
- (5) Для перетворення VAR моделі у VMA представлення, необхідно впевнитись у тому, що VAR модель є стабільною. Для цього виберіть у вікні VAR моделі VIEW/LAG STRUCTURE/ AR ROOTS TABLE

6. Розрахунок функцій відгуку на імпульси і декомпозиції дисперсії (ідентифікація за Холецьким)

(1) Ортогоналізовані функції відгуків на імпульси показують вплив структурних шоків на змінні VAR моделі. Наприклад, відгук змінної **dlind** в період t+1 на структурний шок змінної **unem**, що трапляється в період $t \in$ наступним:

$$c_{1,12} = \frac{\partial \Delta \ln(IND_{t+1})}{\partial UR_t}$$

Для генерування ортогоналізованих функцій відгуків на імпульси, виберіть у вікні оціненої VAR моделі VIEW/IMPULSE RESPONCES

(2) Декомпозиція дисперсії похибок прогнозування показує частку динаміки змінної в результаті її власних шоків порівняно з шоками інших змінних. Виберіть у вікні оціненої VAR моделі VIEW/VARIANCE DECOMPOSITION. Примітка: функції відгуків на імпульси і декомпозиція дисперсії залежать від ідентифікаційної структури. Автоматично EViews використовує рекурсивну структуру (ідентифікація за Холецьким). Виберіть IMPULSE RESPONCES/IMPULSE DEFINITION, щоб побачити порядок, що вибирається EViews.

Impulse Responses		×
Display Impulse Definition Decomposition Method:	Cholesky Ordering:	
	ОК Отме	ена

Виберіть альтернативний порядок (unem dlind). Порівняйте зміни у функціях відгуків на імпульси і декомпозиції дисперсії.

7. Структурні VAR (SVAR)

Альтернативою до рекурсивної структури є врахування обмежень, що виходять з економічної теорії. Цей підхід називається «структурна» векторна авторегресія (SVAR). Розрізняють коротко- і довгострокові обмеження.

8. Ідентифікація за допомогою короктострокових обмежень

(1) EViews використовує підхід, що узагальнює відносини між спостерігаємими похибками прогнозування ε_t і структурними шоками u_t :

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} u_{1,t} \\ u_{2,t} \end{bmatrix}$$

(2) Щоб накласти короткострокові обмеження, необхідно створити матриці А і В. Для цього вибираємо в меню робочого файлу OBJECT/NEW OBJECT

New Object	
Type of object Matrix-Vector-Coef Equation Graph Group LogL Matrix-Vector-Coef Model Pool Sample Series Series Link Series Alpha SSpace System Table Text ValMap VAR	Name for object

Вибираємо ім'я «А» і розмірність (2 рядка і 2 стовпика). Щоб накласти обмеження редагуємо матрицю А: діагональні елементи мають дорівнювати 1, верхній правий – 0, а нижній лівий – «NA» (використовуємо EDIT+/–):

🗖 Matri	x: A Workfile	: UNTITLED\U	ntitled			×
View Proc Object Print Name Freeze Edit+/- Label+/- Sheet Stats Line Mu					e Mult	
					Α	
	C1	C2				
	L	ast updated: O	7/23/06 - 16:04	1		~
R1	1.000000	0.000000				
R2	NA	1.000000				

Примітка: «NA» означає, що елемент залишається необмеженим.

(3) Ствоюємо таким же чином матрицю В і накладаємо другий набір обмежень на неї:

Matrix: B Workfile: UNTITLED\Untitled						<		
View Proc	View Proc Object Print Name Freeze Edit+/- Label+/- Sheet Stats Line Mult							
	В							
		C1	C2			Τ		
		L	.ast ypdated: O	7/23/06 - 16:09	9	^		
R1	R1	NA	0.000000					
R2	R2	0.000000	NA					
						Ξ		
						~		

(3) Вибираємо з меню VAR об'єкту PROCS/ESTIMATE STRUCTURAL FACTORIZATION. Вибириємо опції «Matrix», «Short-run pattern» і вписуємо назви матриць:

SVAR Options			
Identifying Restrict	ions Optimization Co	ntrol	
Endogenous va @e1 for DLIND @e2 for UNEM	riable list: residuals residuals		
Short-run examp @e1 = C(1)*@u @e2 = C(2)*@e	ble: ₁1 ⊧1 + C(3)*@u2		<u> </u>
Identifying Re	strictions (Ae = Bu whe	ere E[u'u] is identity matrix)—	
Specify by: C Text	C Long-run pattern	LR:	
 Matrix 	Short-run pattern	A: A	
		D: D	
		ОК Отм	1ена

Альтернативний шлях: це записати обмеження у текстовій формі. Спробуйте зробити це самостійно (для цього спочатку розпишіть вираз у матричній формі, що наведений вище).

(4) Натискаємо на ОК, отримуємо оцінки матриць А і В. Для того, щоб отримати функції відгуку на імпульси, що є результатом цих обмежень, вибираємо IMPULSE і у вкладці IMPULSE DEFINITION вибираємо опцію «Structural Decomposition». Ви отримамаєте функції відгуку на імпульси на основі SVAR моделі з короктостроковими обмеженнями.

Примітка: ви отримаєте ті ж самі функції відгуку на імпульси як і при ідентифікації за Холецьким з порядком: dlind unem. Це не є сюрпризом, оскільки ми накладаємо ті ж самі обмеження, а саме: $u_{2,t}$ (структурний шок безробіття) не впливає одразу на $\varepsilon_{1,t}$ (dlind).

9. Ідентифікація за допомогою довгострокових обмежень

(1) Ми знаємо, що:

$$c_{1,12} = \frac{\partial \Delta \ln(IND_{t+1})}{\partial UR_t}$$

надає ефект шоку *UR* в час t на $\Delta ln(IND)$ в час t+1. Довгострокові обмеження накладаються на кумулятивний ефект шоку. Наприклад, відповідно до Бланшарда і Кваха (1986), що вперше використали цей метод:

$$\sum_{i=0}^{\infty} c_{i,12} = 0$$

Це означає, що на (1,2)-елемент матриці довгострокових впливів

$$LR = \begin{bmatrix} \sum_{i=0}^{\infty} c_{i,11} & \sum_{i=0}^{\infty} c_{i,21} \\ \sum_{i=0}^{\infty} c_{i,12} & \sum_{i=0}^{\infty} c_{i,22} \end{bmatrix}$$

накладається обмеження (тобто цей елемент прирівнюється 0).

(2) Щоб накласти довгострокові обмеження, одразу вибираємо з меню VAR об'єкту PROCS/ESTIMATE STRUCTURAL FACTORIZATION. Не вибириємо опцію «Matrix», а прямо записуємо довгострокові обмеження в пусте поле:

SVAR Options	X
Identifying Restrictions Optimization Control	
Endogenous variable list: @e1 for DLIND residuals @e2 for UNEM residuals	
Short-run example: @e1 = C(1)*@u1 @e2 = C(2)*@e1 + C(3)*@u2	
Identifying Restrictions (Ae = Bu where E[u'u] is identity matrix)	
Specify by: @LR1(@u2) = 0	
Text	
C Matrix	
· · · · · · · · · · · · · · · · · · ·	
,	
ОК Отмен	la

Примітка: $\sum_{i=0}^{\infty} c_{i,12} = 0$ еквівалентно @LR1(@u2) = 0

Після натискання «ОК», ви отримаєте оцінки матриці В (при структурній декомпозиції з довгостроковими обмеженнями в EViews, матриця А припускається одиничною). Для того, щоб отримати функції відгуку на імпульси, що є результатом цих обмежень, вибираємо IMPULSE і у вкладці IMPULSE DEFINITION вибираємо опцію «Structural Decomposition».

10. Теоретичне завдання

Маємо 5 залишків приведеної VAR моделі (e_{1t} і e_{2t}):

t	1	2	3	4	5
e_{lt}	2	-1	0	-2	1
e_{2t}	1	-2	0	-1	2

- (1) Розрахуйте коваріаційну матрицю залишків Σ
- (2) Виразіть залежність коваріаційної матриці структурних залишків Ω від Σ
- (3) Виразіть залежність елементів матриці Ω від елементів матриці Σ . Покажіть, що за наявної інформації неможливо ідентифікувати структурну VAR модель.
- (4) Використовуючи декомпозицію за Холецьким (де $b_{12} = 0$), знайдіть значення b_{21} , var (ε_1) і var (ε_2) .
- (5) Використовуючи декомпозицію за Холецьким (де $b_{21} = 0$), знайдіть значення b_{12} , var(ε_1) і var(ε_2).
- (6) Використовуючи структурну схему (де $b_{12} = 0.5$), знайдіть значення b_{21} , var(ε_1) і var(ε_2).
- (7) Використовуючи структурну схему (де $b_{21} = 0.5$), знайдіть значення b_{12} , var(ε_1) і var(ε_2).
- (8) Знайдіть значення ε_1 і ε_2 , використовучи кожну із ідентифікаційних схем (4)-(7).

11. Завдання для самостійного виконання

Спробувати повторити дані роботи на українських даних:

(1) Сімс (1986)

Використання короткострокових обмежень для ідентифікації впливів монетарної політики.

(2) Ендерс і Лі (1997)

Декомпозиція динаміки реального і номінального обмінних курсів на компоненти, що спричиненні реальними і номінальними факторами.