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PANEL DATA



Panel Data
 Panel Data is data in which we 

observe repeated cross-sections of the 
same individuals.

 Examples:
◦ Annual unemployment rates of each country 

over several years
◦ Quarterly sales of individual stores over 

several quarters
◦ Wages for the same worker, working at several 

different jobs



Panel Data: Motivation – 1 
With cross-sectional data, there is no 

particular reason to differentiate 
between omitted variables that are 
fixed over time and omitted variables 
that are changing.

However, when an omitted variable is 
fixed over time, panel data offers 
another tool for eliminating the bias.



Panel Data: Motivation – 2 
 The key feature of panel 

data is that we observe the 
same individual in more 
than one condition.

 Omitted variables that are 
fixed will take on the 
same values each time we 
observe the same 
individual. 



Panel Data: Motivation – 3 

 Some of the most valuable 
data sets in economics are 
panel data sets.

Longitudinal surveys 
return year after year to 
the same individuals, 
tracking them over time.



The Basic Data Structure
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Formulate an hypothesis

1 2( , ,..., )it it it kity f x x x=



Example: 
Cross-Industry Wage Disparities – 1 

 A great puzzle in labor economics is the 
presence of cross-industry wage disparities.

 Workers of seemingly equivalent ability, in 
seemingly equivalent occupations, receive 
different wages in different industries.

 Do high-wage industries actually pay 
higher wages, or do they attract workers of 
unobservably higher quality?



Example: Cross-Industry 
Wage Differentials – 2

 Gibbons and Katz (Review of Economic 
Studies 1992) exploited panel data to 
explore these differentials.

 They observed workers in 1984 and 1986.
 They focused on workers who lost their 

1984 jobs because of plant closings (on the 
grounds that plant closings are unlikely to 
be correlated with an individual worker’s 
abilities). They looked only at workers who 
were re-employed by 1986.



Example: Cross-Industry 
Wage Differentials  – 3

 Gibbons and Katz estimated wages as

where 
 Xkit are demographic variables, 
 Dit are a set of dummy variables for being 

employed in different industries
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Example: Cross-Industry 
Wage Differentials  – 4
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Estimating with simple OLS, Gibbons and Katz 
estimate α’s that are very similar to other estimates 
of cross-industry wage differentials.



 Gibbons and Katz speculated that any unmeasured 
ability is fixed over time and equally rewarded in 
all industries.

 Differencing the 1986 and 1984 observations 
eliminated the vi

Example: Cross-Industry 
Wage Differentials  – 5
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Differencing the 1986 and 1984 observations 
eliminated the vi

Example: Cross-Industry 
Wage Differentials  – 6
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Example: Cross-Industry 
Wage Differentials  – 7

 The estimated industry coefficients from 
the differenced equation are about 80% of 
the estimated industry coefficients from the 
levels equation.

 Unobserved worker ability appears to 
explain relatively little of the cross-industry 
wage differentials.



PANEL DATA DGP 



A Panel Data DGP 
(data gathering panel) – 1 
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Panel Data DGPs
 Notice that when we have panel data, we 

index observations with both i and t.
 Pay close attention to the subscripts 

on variables.
 Some variables vary only across time or 

across individual.



A Panel Data DGP 
(data gathering panel) – 2
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A Panel Data DGP 
(data gathering panel) – 3
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One of the key features of the DGP is that we
allow each individual  to have a distinct
intercept  This intercept includes ALL
aspects of unobserved heterogeneity that
are fixed over the length of the panel.



A Panel Data DGP 
(data gathering panel) – 4

 In this DGP, the 𝛽𝛽0i are fixed across 
samples.

The unmeasured heterogeneity is the 
same in every sample.

 It is suitable for panels of states or 
countries, where the same individuals 
would be selected in each sample.



A Panel Data DGP 
(data gathering panel) – 5

 With longitudinal data on individual 
workers or consumers, we draw a 
different set of individuals from the 
population each time we collect 
a sample.

 Each individual has his/her own set of 
fixed omitted variables.

 We cannot fix each individual intercept.



Another Panel Data DGP – 1 
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Another Panel Data DGP – 2 

 In this DGP, we return to a model with a 
single intercept for all data points, 𝛽𝛽0

 However, we break the error term into two 
components:

 When we draw an individual i, we draw 
one vi that is fixed for that individual in all 
time periods

 vi includes all fixed omitted variables.

it i itvε µ= +



Comparison of DGP’s
 In the first DGP, the 

unobserved 
heterogeneity is 
absorbed into the 
individual-specific 
intercept 𝛽𝛽0i

 This DGP is called 
the “Distinct 
Intercepts” DGP.

 In the second DGP, 
the unobserved 
heterogeneity is 
absorbed into the 
individual fixed 
component of the 
error term, vi

 This DGP is an 
“Error Components 
Model.”



The Error Components DGP
• If , 

then the 
unobserved 
heterogeneity is 
uncorrelated 
with 
the explanators.

• OLS is 
unbiased and 
consistent.

 If ,    then 
the unobserved 
heterogeneity IS 
correlated with 
the explanators.

 OLS is BIASED and 
INCONSISTENT.

 Using panel data, we 
can create a 
consistent estimator: 
Fixed Effects.

( ) 0jit iE X v = ( ) 0jit iE X v ≠



Develop an error 
components model

0 1 1 2 2 ...it it it k kit ity x x xβ β β β ε= + + + + +
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Composite error termConstant across individuals

Explanatory 
variables



One-way or two-way error 
components?

it i ituε λ= +

it i t ituε λ µ= + +Individual
effect

Random
error

Time
Effect
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Treatment of individual 
effects

Restrict to one-way model. 
Then two options for 

treatment of individual 
effects:

◦ Fixed effects – assume vi
are constants
◦ Random effects – assume 

vi are drawn independently 
from some probability 
distribution



The Fixed Effects Model 
Treat vi as a constant for each individual

vi now part of constant – but varies by 
individual

( )0 1 1 2 2 ...it i it it k kit ity v x x xβ β β β µ= + + + + + +



Graph
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Note that the slope is the same for each 
individual. Only the constant varies



FIXED EFFECTS



Fixed Effects
 The Fixed Effects Estimator 

used with EITHER the 
distinct intercepts DGP OR 
the error components DGP 

 Basic Idea: estimate a 
separate intercept for each 
individual with dummy 
variables (least squares 
dummy variable estimator -
LCDV).



Least Squares Dummy 
Variable Estimator – 1 

 We have already seen 
that we can use dummy 
variables to estimate 
separate intercepts for 
different groups.

 With panel data we have 
multiple observations for 
each individual. We can 
group these observations.



Least Squares Dummy 
Variable Estimator – 2 

The LSDV estimator is conceptually 
quite simple:
◦ Create a set of n dummy variables, 

Dj, such that Dj = 1 if i = j, Dj =0 
otherwise.
◦ Regress Yit against all the dummies, 

Xt , and Xit variables (you must omit 
Xi variables and the constant).



Least Squares Dummy 
Variable Estimator – 3 

In practice the tricky parts are:
◦ Creating the dummy variables
◦ Entering the regression into the computer
◦ Reporting results



Example – 1 
 Suppose, we have a longitudinal dataset 

with 300 workers over 10 years.
 n = 300
 We must create 300 dummy variables and 

then specify a regression with 
300+ explanators.

 How do we do this in our software 
package?



Example – 2 
Our regression output includes 

300 intercepts. Usually, we are not 
interested in the intercepts themselves.

 In reporting your regression output, 
it is preferable to note that you have 
included “individual fixed effects.” 
Then omit the dummy variable 
coefficients from your table of results.



Example – 3 
 At some point, n becomes too large 

for the computer to handle easily.
 Modern computers can implement LSDV 

for ever larger data sets, but eventually 
LSDV becomes computationally 
intractable.



Solution: Fixed Effects 
estimator

 The initial insight for the Fixed Effects 
estimator: if we DIFFERENCE 
observations for the same individual, the 
vi cancels out.
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Fixed Effects estimator – 1 

 When we difference, 
the heterogeneity term 
vi drops out.

 In the distinct 
intercepts model, the   
𝛽𝛽0i would drop out.

 OLS would be a 
consistent estimator 
of 𝛽𝛽1



Fixed Effects estimator – 2 

 If T = 2, then we have only 2 observations 
for each individual.

 Differencing the 2 observations 
is efficient.

 If T > 2, then differencing any 2 
observations ignores valuable information 
in the other observations for each 
individual.



Fixed Effects estimator – 3 
We can use all the observations 

for each individual if we subtract 
the individual-specific mean from 

each observation.



Fixed Effects estimator – 4 
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Fixed Effects estimator – 5   

1

Fixed Effects:
1) Construct 
                    

2) Regress  
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Analysis – 1 
 The Fixed Effects (FE) and 

DVLS estimators provide 
exactly identical estimates.

 Demeaning each 
observation by the 
individual-specific mean 
eliminates the need to 
create n dummy variables.

 FE is computationally 
much simpler.



Analysis – 2 
 Fixed Effects discards all variation 

between individuals. Fixed Effects uses 
only variation over time within an 
individual.

 Fixed Effects discards a great deal of 
variation in the explanators (all variation 
between individuals).

 Fixed Effects is not efficient if
( ) 0it iE X v =



Is OLS consistent 
and efficient?
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Answer – 1 
 Because X is uncorrelated with either 

v or 𝜇𝜇, OLS is consistent in the 
uncorrelated version of the error 
components DGP.

 The error terms are homoskedatic.

2 2( ) ( )  it i it vVar Var v µε µ σ σ= + = +



Answer – 2 
However, the covariance between 
disturbances for a given individual is
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Answer – 3 
In the presence of serial correlation, OLS is 
inefficient.



Fixed Effects (GLS 
Estimation)

 The fixed effects estimator can also be 
written in GLS form, which brings out its 
relationship to the RE estimator. 

 The FE estimator uses M as the weighting 
matrix rather than Ω.
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RANDOM EFFECTS



Random Effects – 1 
 When unobserved heterogeneity is 

uncorrelated with explanators, panel data 
techniques are not needed to produce a 
consistent estimator.

 However, we do need to correct for serial 
correlation between observations of the 
same individual.



The Random Effects Model

 This approach might be appropriate if 
observations are representative of a sample 
rather than the whole population. 
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Random Effects – 2
When    , panel data provides 

a valuable tool for eliminating omitted 
variables bias. We use Fixed Effects to 
gain the benefits of panel data.

When            , panel data does not 
offer special benefits. We use Random 
Effects to overcome the serial 
correlation of panel data.

( ) 0it iE X v ≠

( ) 0it iE X v =



Random Effects – 3
The key idea of random effects:
◦ Estimate sv

2 and sm
2

◦ Use these estimates to construct efficient 
weights of panel data observations



Random Effects – 5 
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Random Effects - 6
 Once we have estimates of σv

2 and σµ
2, 

we can re-weight the observations 
optimally.

 These calculations are complicated, 
but most computer packages can 
implement them.



Random Effects (GLS 
Estimation)

 The Random Effects estimator has the 
standard generalised least squares form 
summed over all individuals in the 
dataset:

where, given Ω from the previous slide, it 
can be shown that:
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Example: Cobb–Douglas 
production function – 1

 We have data from 625 French firms from 
16 countries for 8 years.

 We wish to estimate a Cobb–Douglas 
production function:

 Taking logs:
 We estimate using random effects.

1 2
0i i i iQ L Kβ ββ ε=

0 1 2ln( ) ln( ) ln( ) ln( ) ln( )i i i iQ L Kβ β β ε= + + +



Example: Cobb–Douglas 
production function – 2



Example: Cobb–Douglas 
production function – 2



Example: Cobb–Douglas 
production function – 3

 We arrive at similar estimates using either 
random effects or fixed effects.

 Because only fixed effects controls 
for unobserved heterogeneity that is 
correlated with the explanators, the 
similarity between the two estimates 
suggests that unobserved heterogeneity is 
not creating a large bias in this sample.



Example: Cobb–Douglas 
production function – 4

 The fixed effects estimator discards all 
variation between firms, and must use 
624 more degrees of freedom than 
random effects.

 The RE estimator provides more 
precise estimates
◦ Moving from RE to FE increases the s.e. 

on capital from 0.0116 to 0.0145
◦ The s.e. on labor moves from 0.0118 

to 0.0132



Example: Cobb–Douglas 
production function – 5

 We would prefer to use RE 
instead of FE, but RE might 
be inconsistent if

 We need a test to help 
determine whether it is safe to 
use RE.

( ) 0it iE X v ≠



For and against random 
effects:

 Random effects are 
efficient 

 Why should we assume 
one set of unobservables
fixed and the other 
random?

 Sample information more 
common than that from the
entire population?

 Can deal with regressors
that are fixed across 
individuals

 Likely to be correlation 
between the unobserved 
effects and the explanatory 
variables. These are 
assumed to be zero in the 
random effects model, but 
in many cases we might 
expect them to be non-
zero. This implies 
inconsistency due to 
omitted-variables in the RE 
model. In this situation, 
fixed effects is inefficient, 
but still consistent.



THE HAUSMAN TEST



The Hausman Test – 1 

Hausman’s specification test for 
error components DGPs provides 
guidance on whether

The key idea: if                    , then 
the inconsistent RE estimator and 
the consistent FE estimator 
converge to different estimates.

( ) 0it iE X v ≠

( ) 0it iE X v ≠



The Hausman Test – 2
 If , then the unobserved 

heterogeneity is uncorrelated with X 
and does not create a bias.

RE and FE are both consistent.
 For two consistent estimators to 

provide significantly different 
estimates would be surprising.

( ) 0it iE X v =



The Hausman Test – 3
 We know the FE estimator is consistent 

even when
 The problem with FE is its inefficiency.
 FE is not as precise as RE.
 Although FE is imprecise, it may provide 

a good enough estimate to detect a large 
bias in RE.

( ) 0it iE X v ≠



The Hausman Test – 4 
 If FE is very imprecise, then the Hausman 

test has very weak power and cannot rule 
out even large biases.

 If FE is very precise, then the Hausman 
test has very good power, but we gain 
little benefit from switching to the more 
efficient RE.



The Hausman Test – 5 
 If FE is somewhat precise, then the 

Hausman test can warn us away from 
using RE in the presence of a large bias, 
but there is still room for substantial 
efficiency gains in switching to RE.



The Hausman Test: Calcus

 A test for the independence of the vi and 
the xkit. The covariance of an efficient 
estimator with its difference from an 
inefficient estimator should be zero. Thus, 
under the null hypothesis we test:

 If W is significant, we should not use the 
random effects estimator.

1 2
RE RE

ˆW=( ) ' ( ) ~ ( )FE FE kβ β β β χ−− Σ −



Example: Cobb–Douglas 
production function with 

fixed effects



Example: Cobb–Douglas 
production function with 

random effects



Example: The Hausman
Test



Example: Analysis

With the French 
manufacturing firms, 
FE is precise enough 
to reject the null even 
though the two 
estimates are fairly 
close.



The Hausman Test: notes – 1 

 Fixed effects exacerbates measurement 
error bias.

 There is likely to be less variation 
in X within the experience of a single 
individual than across several individuals.

 Small measurement errors can become 
large relative to the within-variation in X.



The Hausman Test: notes – 2 

 The Hausman Test warns us that RE and 
FE provide significantly different 
estimates.

 This difference could arise because of 
omitted variables bias in RE, caused by

 This difference could ALSO arise because 
of measurement error biases in FE.

  E( Xitvi ) ≠ 0



REVIEW



Problem
 Potential unobserved heterogeneity is a 

form of omitted variables bias.
 “Unobserved heterogeneity” refers to 

omitted variables that are fixed for an 
individual (at least over a long period of 
time).

 A person’s upbringing, family 
characteristics, innate ability, and 
demographics (except age) do not change.



Data
 Panel Data is data in which we 

observe repeated cross-sections of the 
same individuals.

 The key feature of panel data is that we 
observe the same individual in more than 
one condition.

 Omitted variables that are fixed will take 
on the same values each time we observe 
the same individual.



3 different DGP’s for panel 
data – 1

In the distinct intercept DGP, 
across samples we would 
observe the same individuals 
with the same unobserved 
heterogeneity.
Each i has its own intercept, 𝛽𝛽0i, 

that is fixed across samples.



Model #1
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3 different DGP’s for panel 
data – 2

 Error components DGP’s are suitable 
when we would draw different individuals 
across samples.

 When each i is drawn, its unobserved 
heterogeneity is captured in a vi term.

 We learned two error components 
DGP, depending on whether the vi is 
correlated with the Xkit ’s.



Models #2 and #3
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Problem and solution – 1 

 If , OLS would be inconsistent
 By estimating a separate intercept for each 

individual, we can control for the vi

 We learned two equivalent strategies: 
DVLS and FE.

  E( Xitvi ) ≠ 0



Problem and solution – 2

 The simplest way to 
estimate separate 
intercepts for each 
individual is to use 
dummy variables 
(least squares 
dummy variable 
estimator).

 Fixed effects 
estimator:
◦ Construct

◦ Regress

FE
it it i

FE
it it i

y Y Y
x X X

= −

= −

1
FE FE

it it ity xβ η= +



Problem and solution – 3

 Fixed Effects (however estimated) 
discards all variation between individuals.

 Fixed Effects uses only variation over 
time within an individual.

 Because X is uncorrelated with either 
v or 𝜇𝜇, OLS is consistent in the 
uncorrelated version of the error 
components DGP.



Remember!
 When unobserved heterogeneity is 

uncorrelated with explanators, panel data 
techniques are not needed to produce a 
consistent estimator.

 However, we do need to correct for serial 
correlation between observations of the 
same individual.



Fixed vs Random effects

 When                    , 
panel data provides 
a valuable tool for 
eliminating omitted 
variables bias. 

 We use Fixed Effects 
to gain the benefits of 
panel data.

 When ,         
panel data is less 
convenient than an 
equal-sized 
cross-sectional data 
set. 

 We use Random 
Effects to overcome 
the serial correlation 
of panel data.

( ) 0it iE X v ≠   E( Xitvi ) = 0



The Hausman Test
Hausman’s specification test for error 

components DGPs provides guidance 
on whether

The key idea: if                    , then the 
inconsistent RE estimator and the 
consistent FE estimator converge to 
different estimates.

( ) 0it iE X v ≠
( ) 0it iE X v ≠



QUESTIONS?



THANK YOU FOR 
YOUR ATTENTION!
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