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Traditional model

yt = β0 + β1x1t + ... + βk-1xk-1t + ut, 
or more compactly  
y = Xβ + u.

We also assumed ut ∼ N(0,σ2).



The linear structural (and time series) models cannot 
explain a number of important features common to 
much financial data
 leptokurtosis
 Volatility clustering or volatility pooling
 leverage effects



Traditional approach
 Until the early 1980s econometrics had focused almost 

solely on modeling the means of series - i.e., their actual 
values. 

yt = Et(yt |x) + εt , εt ~ N(0,σ2)
 For an AR(1) process:

Et-1 (yt|x) = Et-1 (yt) = α + β yt-1

 Note:
E(yt) = α/(1-β) 

Var(yt) = σ2/(1-β2)



Conditional VS. Unconditional moments
 The conditional moment is time varying, though the 

unconditional moment is not!

 Unconditional variance: 
Var(yt ) = E[(yt –E[yt])2] = σ2/(1-𝛽𝛽2)

 Conditional variance: 
Vart-1 (yt ) = Et-1[(yt –Et-1[yt])2] = Et-1[εt

2]



mean

variance

Conditional 
variance

Vart-1 (yt ) is the true measure 
of uncertainty at time t-1



A Sample Financial Asset 
Returns Time Series

Daily S&P 500 Returns for January 1990 – December 1999
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Non-linear Models: A 
Definition

 Let’s define a non-linear data generating process as one that 
can be written

yt = f(ut, ut-1, ut-2, …)
where ut is an iid error term and f is a non-linear function.

 A slightly more specific definition as 
yt = g(ut-1, ut-2, …)+ utσ2(ut-1, ut-2, …)

where g is a function of past error terms only and σ2 is a 
variance term.

 Models with nonlinear g(•) are “non-linear in mean”, while 
those with nonlinear σ2(•) are “non-linear in variance”. 



Types of non-linear 
models

 Many apparently non-linear relationships can be made linear by 
a suitable transformation. 

 On the other hand, it is likely that many relationships in finance 
are intrinsically non-linear.

 There are many types of non-linear models, e.g.
 ARCH / GARCH
 switching models
 bilinear models



Testing for Non-linearity 
 The “traditional” tools of time series analysis (acf’s, spectral 

analysis) may find no evidence that we could use a linear 
model, but the data may still not be independent.

 Portmanteau tests for non-linear dependence have been 
developed. 

 The simplest is Ramsey’s RESET test, which took the form:

 Many other non-linearity tests are available, e.g. the “BDS 
test” and the bispectrum test.

 One particular non-linear model that has proved very useful in 
finance is the ARCH model due to Engle (1982).

   ... u y y y vt t t p t
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t= + + + + +−β β β β0 1
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Heteroscedasticity
 An example of a structural model is

with ut
 The assumption that the variance of the errors is constant is known as 

homoscedasticity, i.e. 
Var (ut) =       .

What if the variance of the errors is not constant? 
 heteroscedasticity
 would imply that standard error estimates could be wrong.

 Is the variance of the errors likely to be constant over time? 
 Not for financial data.

σ u
2

yt = β1 + β2x2t + β3x3t + β4x4t + u t 

( )20,N σ





Autoregressive Conditionally 
Heteroscedastic (ARCH) Models –1
 So use a model which does not assume that the variance is constant.
 Recall the definition of the variance of ut:

 We usually assume that E(ut) = 0, so 

 What could the current value of the variance of the errors plausibly 
depend upon?
 Previous squared error terms. 

 This leads to the autoregressive conditionally heteroscedastic model 
for the variance of the errors:

𝜎𝜎𝑡𝑡 2= α0 + α1𝑢𝑢2𝑡𝑡−1
 This is known as an ARCH(1) model.

2 2
1 2 1 2( / , ,...) [( ( )) / , ,...]t t t t t t t tVar u u u E u E u u uσ − − − −= = −

2 2
1 2 1 2( / , ,...) [( / , ,...]t t t t t t tVar u u u E u u uσ − − − −= =



Autoregressive Conditionally 
Heteroscedastic (ARCH) Models –2

 The full model would be 

ut ∼ N(0,𝜎𝜎𝑡𝑡2)
𝜎𝜎𝑡𝑡 2 = 𝛼𝛼0 + 𝛼𝛼1𝑢𝑢2𝑡𝑡−1

 We can easily extend this to the general case where the 
error variance depends on q lags of squared errors 
(ARCH(q) model):

𝜎𝜎𝑡𝑡 2 = 𝛼𝛼0 + 𝛼𝛼1𝑢𝑢2𝑡𝑡−1 + 𝛼𝛼2𝑢𝑢2𝑡𝑡−2 +
⋯

+ +𝛼𝛼𝑞𝑞𝑢𝑢2𝑡𝑡−𝑞𝑞

1 2 2  +  ... t t k kt ty x x uβ β β= + + +



Ways of Writing ARCH 
Models - 1 

Instead of calling the variance 𝜎𝜎𝑡𝑡 2 , in the literature it is 
usually used ht, so the model is

ut ∼ N 0, h

ℎ = 𝛼𝛼0 + 𝛼𝛼1𝑢𝑢2𝑡𝑡−1 + 𝛼𝛼2𝑢𝑢2𝑡𝑡−2 +
⋯

+ +𝛼𝛼𝑞𝑞𝑢𝑢2𝑡𝑡−𝑞𝑞

1 2 2  +  ... t t k kt ty x x uβ β β= + + +



Ways of Writing ARCH 
Models - 2
 We can also write

,  
ut =v𝑡𝑡𝜎𝜎𝑡𝑡

vt ∼ N 0, 1

𝜎𝜎𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑢𝑢2𝑡𝑡−1 + 𝛼𝛼2𝑢𝑢2𝑡𝑡−2 +
⋯

+ +𝛼𝛼𝑞𝑞𝑢𝑢2𝑡𝑡−𝑞𝑞

 The two are different ways of expressing exactly the same 
model. The first form is easier to understand while the second 
form is required for simulating from an ARCH model, for 
example.

1 2 2  +  ... t t k kt ty x x uβ β β= + + +



Testing for “ARCH 
Effects”
 First, run any postulated linear regression of the form given in the equation 

above,  e.g.

saving the residuals, ut .

 Then square the residuals, and regress them on q own lags to test for ARCH 
of order q, i.e. run the regression 

where vt is iid.
Obtain R2 from this regression

 The test statistic is defined as T•R2 (the number of observations multiplied 
by the coefficient of multiple correlation) from the last regression, and is 
distributed as a χ2(q).

1 2 2  +  ... t t k kt ty x x uβ β β= + + +

2 2 2 2
0 1 1 2 2 ...t t t q t q tu u u u vγ γ γ γ− − −= + + + + +



Testing for “ARCH 
Effects” – 2
 The null and alternative hypotheses are

H0 : γ1 = 0 and γ2 = 0 and  γ3 = 0 and ... and γq = 0
H1 : γ1 ≠ 0 or  γ2 ≠ 0 or γ3 ≠ 0 or  ... or  γq ≠ 0.

 If the value of the test statistic is greater than the critical 
value from the χ2 distribution, then reject the null 
hypothesis.



Problems with ARCH(q) 
Models

 How do we decide on q?
 The required value of q might be very large
 Non-negativity constraints might be violated. 

 When we estimate an ARCH model, we require αi >0 ∀
i=1,2,...,q (since variance cannot be negative)

 A natural extension of an ARCH(q) model which gets 
around some of these problems is a GARCH model.



Generalised ARCH 
(GARCH) Models 
 Due to Bollerslev (1986). 
 Allow the conditional variance to be 

dependent upon previous own lags
 The variance equation is now

u2
t = 𝛼𝛼0 + 𝛼𝛼1𝑢𝑢2𝑡𝑡−1 + 𝛽𝛽𝜎𝜎2𝑡𝑡−1

 This is a GARCH(1,1) model, which is 
like an ARMA(1,1) model for the 
variance equation.



Variance – 1 
 We could also write

 Substituting :

2 2 2
1 0 1 2 2

2 2 2
2 0 1 3 3

t t t

t t t

a u

a u

σ α βσ

σ α βσ
− − −

− − −

= + +

= + +

( )2 2 2 2
0 1 1 0 1 2 2

2 2 2
0 1 1 0 1 2 2

t t t t

t t t

a u a u

a u a u

σ α β α βσ

α α β β βσ
− − −

− − −

= + + + + =

= + + + +



Variance – 2 
 In general

 So the GARCH(1,1) model can be written as an infinite 
order ARCH model.

( )

( ) ( )

( ) ( )

2 2 2 2 2 2
0 1 1 0 1 2 0 1 3 3

2 2 2 2 2 2 3 2
0 1 1 0 1 2 0 1 3 3

2 2 2 2 2 3 2
0 1 1 3

2 2 2 2 2 2
0 1 1 0

1 1

...

1 ... 1 ...

t t t t t

t t t t t

t t t

t t
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σ α α β β β α βσ
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σ α β β β β β σ

σ α β β β β β σ
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− −

∞
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GARCH(p,q)
 We can again extend the GARCH(1,1) model to a 

GARCH(p,q):

2 2 2 2 2 2 2
0 1 1 2 2 1 1 2 2

2 2 2
0

1 1

... ...t t t q t q t t p t p

q p

t i t i j t j
i j

u u u

u

σ α α α α β σ β σ β σ

σ α α β σ

− − − − − −

− −
= =

= + + + + + + + +

= + +∑ ∑



Generalised ARCH 
(GARCH)

 In general a GARCH(1,1) model will be sufficient to 
capture the volatility clustering in the data.

 GARCH is better than ARCH:
 more parsimonious - avoids overfitting (the previous page 

show that a GRACH(1,1) is equivalent to an ARCH(∞), but 
with only 3 parameters)

 less likely to breech non-negativity constraints



The Unconditional Variance 
under the GARCH Specification

The unconditional variance of ut is given by

when

is termed “non-stationarity” in variance

is termed intergrated GARCH

For non-stationarity in variance, the conditional variance 
forecasts will not converge on their unconditional value as the 
horizon increases.

Var(ut) = 
)(1 1

0

βα
α
+−

  

βα +1  < 1 

βα +1  ≥ 1 

βα +1  = 1 



Estimation of 
ARCH / GARCH Models 

 Since the model is no longer of the 
usual linear form, we cannot use OLS.

 We use another technique known as 
maximum likelihood.

 The method works by finding the most 
likely values of the parameters given 
the actual data. 

 More specifically, we form a log-
likelihood function and maximise it.



Estimation of 
ARCH / GARCH Models: ML
 The steps involved in actually estimating an ARCH or GARCH 

model are as follows

 Specify the appropriate equations for the mean and the variance - e.g. 
an AR(1)- GARCH(1,1) model:

 Specify the log-likelihood function to maximise:

 The computer will maximise the function and give parameter values 
and their standard errors

yt = µ + φyt-1 + ut   , ut ∼ N(0,σt
2)  

σt
2 = α0 + α1

2
1−tu +βσt-1

2 
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Estimation of GARCH Models Using 
Maximum Likelihood

 Now we have yt = µ + φyt-1 + ut , ut ∼ N(0, 𝜎𝜎2
𝑡𝑡) 

 Unfortunately, the LLF for a model with time-varying variances cannot be 
maximised analytically, except in the simplest cases. So, a numerical 
procedure is used to maximise the log-likelihood function. A potential 
problem: local optima or multimodalities in the likelihood surface. 

 The way we do the optimisation is:
 Set up LLF.
 Use regression to get initial guesses for the mean parameters.
 Choose some initial guesses for the conditional variance parameters.
 Specify a convergence criterion - either by criterion or by value.

σt
2 = α0 + α1

2
1−tu +βσt-1
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Non-Normality and Maximum 
Likelihood

 Recall that the conditional normality assumption for ut is essential.
 We can test for normality using the following representation

ut = vtσt

vt ∼ N(0,1)

 The sample counterpart is

 Are the      normal? Typically      are still leptokurtic, although less so than the    . Is 
this a problem? 

 Not really, as we can use the ML with a robust variance/covariance estimator.  ML 
with robust standard errors is called Quasi- Maximum Likelihood or QML. 

σ α α α σt t tu= + +− −0 1 1
2

2 1
2

v u
t

t

t
=
σ

t

t
t

uv
σ̂
ˆˆ =

tv̂ tv̂ tû



Problems with 
GARCH(p,q) Models

 Non-negativity constraints may still be violated
 GARCH models cannot account for leverage effects





EXOGENOUS VARIABLES IN A 
GARCH MODEL

 Include predetermined variables into the variance equation
 Easy to estimate and forecast one step
 Multi-step forecasting is difficult
 Timing may not be right

2
0 1 1 1 1t t t th u h zα α β γ− − −= + + +



Extensions to the Basic 
GARCH Model

 Since the GARCH model was developed, a huge number 
of extensions and variants have been proposed. 

 Three of the most important examples are: 
 EGARCH, 
 GJR, 
 GARCH-M.



The EGARCH Model 
 Suggested by Nelson (1991). The variance equation is 

given by

 Advantages of the model
 Since we model the log(σt

2), then even if the parameters are 
negative, σt

2 will be positive.
 We can account for the leverage effect: if the relationship 

between volatility and returns is negative, γ, will be 
negative.
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The GJR Model
 Due to Glosten, Jaganathan and Runkle

where It-1 = 1 if ut-1 < 0 and It-1 = 0 otherwise.

 For a leverage effect, we would see γ > 0.
 We require α1 + γ ≥ 0 and α1 ≥ 0 for non-negativity. 

σt
2 = α0 + α1

2
1−tu +βσt-1

2+γut-1
2It-1 



An Example of the use of 
a GJR Model

 Using monthly S&P 500 returns, December 1979- June 
1998

 Estimating a GJR model, we obtain the following results.

)198.3(
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News Impact Curves
The news impact curve plots the next period 
volatility (ht) that would arise from various 
positive and negative values of ut-1, given an 
estimated model.



News Impact Curves for GARCH 
and GJR Model Estimates
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Integrated GARCH 
(IGARCH)

 This model was originally described in Engle and 
Bollerslev (1986).

 Model restricts the parameters of the GARCH model to 
sum to one and drop the constant term: 

2 2 2
1 1

1 1

1 1
1

q p

t j t i t
j i

q p

j i
j i

uσ β σ α

β α

− −
= =

= =

= +

+ =

∑ ∑

∑ ∑



The Power ARCH (PARCH)
 Taylor (1986) and Schwert (1989) introduced the standard 

deviation GARCH model, where the standard deviation is 
modeled rather than the variance: 

( )0 1 1 1
1 1

0, 1, 1,..., , 0 , .

q p

t j t i t i t
j i

i i

u u

i r for i r r p

δδ δσ α β σ α γ

δ γ γ

− − −
= =

= + + −

> ≤ = = > ≤

∑ ∑



Component GARCH 
(CGARCH) – 1 

 The model allows mean reversion to a varying level:

 The first equation describes the transitory component,  
which converges to zero with powers of (𝛼𝛼+𝛽𝛽). 

 The second equation describes the long run component mt, 
which converges to 𝛼𝛼0 with powers of 𝜌𝜌.  𝜌𝜌 is typically 
between 0.99 and 1 so that approaches very slowly.

( ) ( )
( ) ( )

2 2 2
1 1 1 1

2 2
0 1 0 1 1

t t t t t t

t t t t

m u m m

m m u

σ α β σ

α ρ α φ σ

− − − −

− − −

− = − + −

= + − + −
2
t tmσ −



Component GARCH (CGARCH) – 2 

 Combination of equations:

 The component model is a (nonlinear) restricted 
GARCH(2, 2) model.

( )( ) ( )
( )( ) ( )

( )( )

2 2
0 1

2 2
2 1

2
2

1 1t t

t t

t

a u

u

σ β ρ α α φ

αρ α β φ β φ σ

βρ α β φ σ

−

− −

−

= − − − + +

− + + + −
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GARCH-in Mean
 We expect a risk to be compensated by a higher return. So why 

not let the return of a security be partly determined by its risk?

 Engle, Lilien and Robins (1987) suggested the ARCH-M 
specification. A GARCH-M model would be

where δ can be interpreted as a sort of risk premium.

 It is possible to combine all or some of these models together to 
get more complex “hybrid” models - e.g. an ARMA-
EGARCH(1,1)-M model.

yt = µ + δσt-1+ ut   , ut ∼ N(0,σt
2)  

σt
2 = α0 + α1

2
1−tu +βσt-1

2 



Threshold ARCH (TARCH) 
 Rabemananjara, R. and  J.M. Zakoian (1993), “Threshold 

ARCH Models and Asymmetries in Volatilities” Journal 
of Applied Econometrics.



TARCH-model – 1 
 Large events to have an effect but no effect from small 

events

2 2
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2
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TARCH-model – 2 
 There are two variances:

 Many other versions are possible by adding minor 
asymmetries or non-linearities in a variety of ways.

2 2 2
0

1 1

2 2 2
0

1 1
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Switching ARCH 
(SWARCH)

 Hamilton, J. D. and R. Susmel (1994), "Autoregressive 
Conditional Heteroskedasticity and Changes in Regime," 
Journal of Econometrics.



SWARCH – 1 
 Simplest case: 2-state process.
 Assume the existence of an unobserved variable, st, that 

can take two values: one or two (or zero or one).  
 Postulate a Markov transition matrix, P, for the evolution 

of the unobserved variable:

p(st =1 | st-1 =1) = p
p(st =2 | st-1 =1) = (1-p)

p(st =1 | st-1 =2) = q 
p(st =2 | st-1 = 2) = (1-q)



SWARCH – 2 
 Reformulate ARCH(q)  equation to make the conditional 

variance dependent on st –i.e., the state of the economy.

 A  parsimonious formulation:

1 1

2 2
0 , , ,
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t t t t
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SWARCH – 3 
 For a SWARCH(1) with 2 states (1 and 2) we have 4 

possible σt
2:

1 1 1

1 1

2 2 1

2 2 2

2 2
0 1 1 1

2 2
0 1 1 2 1

2 2
0 1 1 1

2 2
0 1 1 1

/ , 1, 1

/ , 1, 2

/ , 2, 1

/ , 2, 2

t t t t

t t t t

t t t t

t t t t

s s

s s

s s

s s

σ α γ α ε γ γ

σ α γ α ε γ γ

σ α γ α ε γ γ

σ α γ α ε γ γ

− −

− −

− −

− −

= + = =

= + = =

= + = =

= + = =



SWARCH – 4 
 Estimation of the model will estimate the volatility 

parameters and the transition probabilities. As a byproduct 
of the estimation, we will also have an estimate for the 
latent variable –i.e., the “state.”





What Use Are GARCH-
type Models?
 GARCH can model the volatility clustering effect since the 

conditional variance is autoregressive. Such models can be 
used to forecast volatility.

 We could show that
Var (yt  yt-1, yt-2, ...)  = Var (ut  ut-1, ut-2, ...)

 So modelling σt
2 will give us models and forecasts for yt as 

well. 

 Variance forecasts are additive over time. 



Forecasting Variances using 
GARCH Models

 Producing conditional variance forecasts from GARCH models uses 
a very similar approach to producing forecasts from ARMA models.

 It is again an exercise in iterating with the conditional expectations 
operator.

 What is needed is to generate forecasts of 
σ2

T+1 ΩT, σ2
T+2 ΩT, ..., σ2

T+sΩT 
where ΩT denotes all information available up to and including 
observation T. 

 Adding one to each of the time subscripts of the above conditional 
variance equation, and then two, and then three would yield the 
following equations

σ2
T+1 =α0 +α1+



Forecasting Variances
 Any s-step ahead forecast (s ≥ 2) would be produced by
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What Use Are Volatility 
Forecasts?

 Option pricing
 Dynamic hedge ratios (the size of the futures position to 

the size of the underlying exposure, i.e. the number of 
futures contracts to buy or sell per unit of the spot good. 

 Stock pricing



Questions & Answers
 Lots of ARCH models. Which one to 

use?
 Choice of p and q. How many lags to 

use?
 It turns out that the GARCH(1,1) is a 

great starting model. 
 Add a leverage effect for financial 

series and it’s even better.



Testing Hypotheses about 
Non-linear Models 
 Usual t- and F-tests are still valid in non-linear models, but 

they are not flexible enough.

 There are three hypothesis testing procedures based on 
maximum likelihood principles: 
 Wald, 
 Likelihood Ratio, 
 Lagrange Multiplier.

 Consider a single parameter, θ to be estimated, 
 Denote the MLE as     and a restricted estimate asθ̂ ~θ



Comparison of Testing 
Procedures – 1 
 Denoting the maximised value of the LLF by 

unconstrained ML as L(  ) and 
the constrained optimum as    

θ̂
L( ~)θ 
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Comparison of Testing 
Procedures – 2 

• The vertical distance forms the basis of the LR test.
• The Wald test is based on a comparison of the horizontal 

distance.
• The LM test compares the slopes of the curve at A and B. 
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Likelihood Ratio Tests – 1 
 Estimate under the null hypothesis and under the alternative.
 Then compare the maximised values of the LLF.
 So we estimate the unconstrained model and achieve a given 

maximised value of the LLF, denoted Lu
 Then estimate the model imposing the constraint(s) and get a 

new value of the LLF denoted Lr.

 Note, Lr ≤ Lu  comparable to RRSS ≥ URSS

 The LR test statistic is given by
LR = -2(Lr - Lu) ∼ χ2(m)

where m = number of restrictions 



Likelihood Ratio Tests: 
Example
 We estimate a GARCH model and obtain a maximised LLF of 

66.85. We are interested in testing whether β = 0 in the 
following equation.

yt = µ + φyt-1 + ut ,   ut ∼ N(0, 𝜎𝜎2
𝑡𝑡) 

𝜎𝜎2
𝑡𝑡= α0 + α1u2

t−1+ β𝜎𝜎2
t-1

 We estimate the model imposing the restriction and observe 
the maximised LLF falls to 64.54. Can we accept the 
restriction?

 LR = -2(64.54-66.85) = 4.62.
 The test follows a χ2(1) = 3.84 at 5%, so reject the null.





Goal
Goal

 to consider the out of sample forecasting performance of 
GARCH and EGARCH Models for predicting stock index 
volatility;

 compare GARCH with implied volatility (the markets 
expectation of the “average” level of volatility).

Used data 
 weekly closing prices (Wednesday to Wednesday, and Friday to 

Friday) for the S&P100 Index option and the underlying 11 
March 83 - 31 Dec. 89

Source
 Day & Lewis (1992)



The Model – 1 
The “Base” Models
 For the conditional mean

 And for the variance

or 

where
 RMt - denotes the return on the market portfolio
 RFt - denotes the risk-free rate
 ht - denotes the conditional variance from the GARCH-type models 
 σt

2 denotes the implied variance from option prices.
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The Model: add in a lagged 
value of the implied volatility

Add in a lagged value of the implied volatility parameter to 
equations:
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Tests – 1   

H0 : δ = 0 (base model).

H0 : α1 = 0 and β1 = 0 
H0 : α1 = 0 and β1 = 0 and θ = 0 and 
γ = 0.



Tests – 2 
 If this second set of restrictions holds, then

 We can test all of these restrictions using a likelihood ratio 
test.
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In-sample Likelihood Ratio 
Test Results: GARCH



In-sample Likelihood Ratio 
Test Results: EGARCH



Models conclusions
 Implied volatility has extra incremental power for 

modelling stock volatility beyond GARCH.
 But the models do not represent a true test of the 

predictive ability of implied volatility. So the authors 
conduct an out of sample forecasting test.

 There are 729 data points. They use the first 410 to 
estimate the models, and then make a 1-step ahead 
forecast of the following week’s volatility.

 Then they roll the sample forward one observation at a 
time, constructing a new one step ahead forecast at each 
step.



Out-of-Sample Forecast 
Evaluation
 They evaluate the forecasts in two ways:
 The first is by regressing the realised volatility series on the 

forecasts plus a constant:

where        is the “actual” value of volatility, and      is the 
value forecasted for it during period t.

 Perfectly accurate forecasts imply b0 = 0 and b1 = 1.

 “True” value of volatility at time t:
 the square of the weekly return on the index (SR);
 the variance of the week’s daily returns multiplied by the number 

of trading days in that week (VW).
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Out-of Sample Model 
Comparisons



Do the IV Forecasts Encompass 
those of the GARCH Models?



Conclusions
 Within sample results suggest that IV contains extra 

information not contained in the GARCH / EGARCH 
specifications.

 Out of sample results suggest that nothing can accurately 
predict volatility!





OBJECTIVE
Objective
To establish a variance forecasting model

Why?
 Important for risk managers (VaR)
Used to price options
Volatility + Return = investment decision



DATA SET – 1 
 Source DataStream
 Period 3/27/1998 - 3/28/2008 (10 years)
 Granularity1 day



DATA SET – 2 
 Local Instruments

 Change in Exchange Rates
 EUR / USD / JPY / GBP

 Change in short-term interest rates
 T-Bill (US) / BTAN (FR)

 Global Instruments
 Change in Short-term Eurodollar rate
 Change in the Term Structure spread



BACKGROUND INFORMATION

Realized / observed volatility is measured by 
squared returns

Volatility displays a positive correlation with 
its own past

Simple Model  

PB : Equal weights on the past m observations
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FORECASTING MODELS
 Flexible model GARCH (1,1) 

 Extended to Local and Global Instruments

 Models to be tested
 GARCH (1,1)
 GARCH (1,1) + Local
 GARCH (1,1) + Global
 GARCH (1,1) + Local + Global
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Best models for each 
country



RESULTS
 Best model for German Market
 R2 of 15.56%
 Final equation

 Simple GARCH + 
 % Change in €/£ Exchange (L) +
 % Change in Term Structure Spread (G)

 No universal model
 Different countries = different models





Gold: An Investment 
Tool

Equities and Commodities
Gold forms 45% of total futures trading 

globally
An effective hedging tool
Higher liquidity than other real assets
Oil price impact on Gold
Resale value of Gold
Forecasting the future Gold prices



Data and Methodology
 Daily prices from NYMEX and COMEX
 14 years, appx. 3500 data points

 ARIMA
 GARCH



Price Graph of Gold Prices
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Stationarity

• Gold Price series is not 
stationary.

• First Difference of the 
price series.



Dickey Fuller Test
Dickey Fuller Test (Gold prices, D(Gold))

Intercept
ADF Test 
Statistic -23.863 1% Critical Value* -3.4353

Akaike info criterion 5.482112

Schwarz criterion 5.492703

Trend and
Intercept

ADF Test 
Statistic -23.9215 1% Critical Value* -3.9662

Akaike info criterion 5.481955

Schwarz criterion 5.494311

None

ADF Test 
Statistic -23.8299 1% Critical Value* -2.5664

Akaike info criterion 5.481968

Schwarz criterion 5.490794
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Normality
Mean 0.086144

Median 0

Skewness -0.74033

Kurtosis 18.11785

Jarque Barra 33582.55

Probability 0

Kurtosis high, indicating a ‘fat tail’ distribution or a leptokurtic 
distribution.



Heteroscedasticity

ARCH Test:

F-statistic 74.38698 Probability 0
Obs*R-squared 72.86433 Probability 0



GARCH (1,1)

Variance Equation

C 9.54E-08 9.48E-08 1.00621 0.3143
ARCH(1) 0.04162 0.01339 3.10826 0.0019

GARCH(1) 0.960488 0.012698 75.64137 0



Performance of out of 
sample forecast

560

580

600

620

640

660

3400 3410 3420 3430 3440 3450 3460 3470 3480 3490

GOLD GOLDFS





Problem
 the linear structural (and time series) models cannot 

explain a number of important features common to much 
financial data



Types of GARCH
GARCH(p,q) – the most 
common non-linear model
EGARCH, 
GJR, 
GARCH-M  etc.



News Impact Curves
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Estimation of ARCH / 
GARCH Models 

 Since the model is no longer of the usual linear form, we 
cannot use OLS.

 We use another technique known as maximum likelihood.
 The method works by finding the most likely values of the 

parameters given the actual data. 
 More specifically, we form a log-likelihood function and 

maximise it.



Forecasting GARCH-type 
Models?

 We could show that
Var (yt  yt-1, yt-2, ...)  = Var (ut  ut-1, ut-2, ...)

 So modelling σt
2 will give us models and forecasts for yt

as well. 
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