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 Econometric review

 Econometric tests



ECONOMETRIC 

REVIEW



Econometric analysis

 Theoretical approach

 Empirical approach



Types of Data and 

Notation

 Time series data

 Cross-sectional data

 Panel data, a combination of mentioned 

above types



Time series data

 The data may be

 quantitative (e.g. exchange rates, stock prices, number 

of shares outstanding), 

 qualitative (e.g. day of the week).

 Examples of time series data

Series Frequency

GNP or unemployment monthly or quarterly

government budget deficit annually

money supply weekly

value of a stock 

market index as transactions occur



Examples of Problems 

Using Time Series 

Regression

1. How the value of a country’s stock index 

has varied with that country’s 

macroeconomic fundamentals.

2. How the value of a company’s stock price 

has varied when it announced the value of 

its dividend payment.

3. The effect on country’s currency of an 

increase in its interest rate.



Cross-sectional data

 Cross-sectional data is data on one or 

more variables collected at a single point 

in time, e.g.

◦ A poll of usage of internet stock broking 

services 

◦ Cross-section of stock returns on the New 

York Stock Exchange

◦ A sample of bond credit ratings for UK banks



Examples of Problems 

Using a Cross-Sectional 

Regression

 The relationship between company 

size and the return to investing in its 

shares

 The relationship between a country’s 

GDP level and the probability that 

the government will default on its 

sovereign debt.



Panel Data

 Panel Data has the dimensions of both time 
series and cross-sections, e.g. the daily prices 
of number of blue chip stocks over two 
years.

 It is common to denote that each observation 

by the letter t and the total number of 

observations by T for time series data, and to 

denote each observation by the letter i and 

the total number of observations by N for 
cross-sectional data.



Goal

 Develop a statistical model that can 

predict the values of a dependent 

(response) variable based upon the values 

of the independent (explanatory) 

variables. 



Regression Modeling 

Steps 

 Define a problem or question

 Specify model

 Collect data

 Do descriptive data analysis

 Estimate unknown parameters

 Evaluate model

 Use model for prediction 



How is a Linear 

Regression Analysis done? 



Linear regression

- dependent variable;

- independent variables;

- residuals.
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Assumptions

 Linearity - the Y variable is linearly 
related to the value of the X variable. 

 Independence of Error - the error 
(residual) is independent for each value of 
X.

 Homoscedasticity - the variation around 
the line of regression be constant for all 
values of X.

 Normality - the values of Y be normally 
distributed at each value of X.



Method of Least Squares

 The straight line that best fits the data.

 Determine the straight line for which the 

differences between the actual values (Y) 

and the values that would be predicted 

from the fitted line of regression (Y-hat) 

are as small as possible.
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The Three Desirable 

Characteristics

 Lack of bias 𝐸  𝛽 = 𝛽
 Efficiency
◦ Standard error will be minimum

 Remember:

 OLS will  minimize σ2 (the 
error variance) 

 Consistency
◦ As N increases the standard error 

decreases
 Notice: as N increases so does Σxi
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Inherently Linear 

Models

Non-linear models that can be 

expressed in linear form

◦Can be estimated by least square in 

linear form

Require data transformation



Dummy-Variable 

Regression Model

 Involves categorical X variable with 

two levels

◦ e.g., female-male, employed-not 

employed, etc.

 Variable levels coded 0 & 1

 Assumes only intercept is different

◦ Slopes are constant across categories



ECONOMETRIC 

TESTS



Multiple Regression Tests

 Test residual for normality

 Test parameter significance

◦ Overall model

◦ Individual coefficients

 Test for multicollinearity

 Test for model stability

 Test for residuals autocorrelation

 Test for residuals homoscedasticity

 Test for specification

 Test for stationary process



Test residual for normality

Check normality of 

residuals:

 Jarque-Bera

statistics

 Shapiro–Wilk test



Jarque-Bera statistics

 S is the sample skewness, 

 K is the sample kurtosis.
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Example



Residuals
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Check for normality



Test parameter 

significance: Overall 

model

 Hypotheses

◦ H0: 𝛽1 = 𝛽2 = ... = 𝛽k-1 = 0 

 No Linear Relationship

◦ Ha: At Least One Coefficient Is Not 0 

 At Least One X Variable linearly Affects Y
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Overall Significance 

Rejection Rule

 Reject  H0 in favor of Ha if Fcalc falls in 
colored area

 Reject  H0 for Ha if P-value = P(F>Fcalc)<α


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Example



Test of slope coefficients

Hypotheses

◦H0: 𝛽i=m

◦Ha: 𝛽i≠m



Slope Coefficient Test 

Statistic
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Test of Slope Coefficient 

Rejection Rule

 Reject  H0 in favor of Ha if t falls in colored 

area

 Reject  H0 for Ha if P-value = P(T>|t|) < α

T=t(n-k)
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Special case: significance 

of coefficient

 Hypotheses

◦ H0: 𝛽i=0

◦ Ha: 𝛽i≠0
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Example



Wald test

Null Hypothesis:          0: 3210  H   

Alternative hypothesis 11 : H or 2 or 3  

   or any two of them or all are nonzero.  

                                 At least one of them is significant. 
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Test statistics with J numbers of restriction 
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Calculate F and compare it with the critical values F(J, n-k) 

from the Table. 



Test for multicollinearity

 High correlation between X variables

 Coefficients measure combined effect

 Leads to unstable coefficients depending on 

X variables in model

 Always exists;  matter of degree

 Example: Using both total number of rooms 

and number of bedrooms as explanatory 

variables in same model 



Detecting Multicollinearity

 Farrar-Glauber Multicollinearity

 VIF-test

 Few remedies

◦ Obtain new sample data

◦ Eliminate one correlated X variable

◦ Standardize your independent variables.
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Test for structural breaks
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Chow Test

 Tests whether the coefficients in 

two linear regressions on different data 

sets are equal.

 
1 2

, 2

1 2

1

2

( ) /
~

/ 2

_

_

_

c
k n k

c

RSS RSS RSS k
F F

RSS RSS n k

RSS combined RSS

RSS pre break RSS

RSS post break RSS



 


 



 

 



Test for residuals 

autocorrelation

 Durbin-Watson test (only checks for first 

order serial correlation in residuals)

 Breusch-Godfrey Test (checks for higher 

order autocorrelation AR(q) in residuals)



Durbin-Watson statistic
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Breusch-Godfrey Test
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Tests for 

Heteroskedasticity

 There are two types of tests: 

◦ Tests for continuous changes in variance: 

White test, Breusch–Pagan tests, etc.

◦ Tests for discrete (lumpy) changes in variance: 

the Goldfeld–Quandt test



The White Test

 The White test for heteroskedasticity has 

a basic premise: if disturbances are 

homoskedastic, then squared errors are 

on average roughly constant.

 Explanators should NOT be able to 

predict squared errors, or their proxy, 

squared residuals.

 The White test is the most general test for 

heteroskedasticity.



Steps of the White Test

 Regress Y against your various explanators
using OLS, compute the OLS residuals, ε1,...,
ε n

 Regress εi
2 against a constant, all of the 

explanators, the squares of the explanators, 
and all possible interactions between the 
explanators (p slopes total)

 Compute R2 from the “auxiliary equation” in 
step 2

 Compare nR2 to the critical value from the 
Chi-squared distribution with p degrees of 
freedom.



The Breusch–Pagan Test – 1  

 The Breusch–Pagan test is very similar to 
the White test.

 The White test specifies exactly which 
explanators to include in the auxiliary 
equation. Because the test includes cross-
terms, the number of slopes (p) increases 
very quickly.

 In the Breusch–Pagan test the 
econometrician selects which explanators to 
include. Otherwise, the tests are the same.



The Breusch–Pagan Test – 2

 In the Breusch–Pagan test, the 

econometrician selects m explanators to 

include in the auxiliary equation.

 Which explanators to include is a 

judgment call.

 A good judgment call leads to a more 

powerful test than the White test.

 A poor judgment call leads to a poor test.



The Goldfeld–Quandt Test – 1 

 Both the White test and the Breusch–

Pagan test focus on smoothly changing 

variances for the disturbances.

 The Goldfeld–Quandt test compares 

the variance of error terms across 

discrete subgroups.

 Under homoskedasticity, all subgroups 

should have the same estimated variances.



The Goldfeld–Quandt Test – 2 
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Goldfeld–Quandt Test – 3 
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Test for specification
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Ramsey’s RESET

 RESET relies on a trick similar to the 

special form of the White test

 Instead of adding functions of the x’s 

directly, we add and test functions of ŷ

 So, estimate y = 𝛽0 + 𝛽1x1 +…+ 𝛽kxk + 

𝛿1ŷ2 + 𝛿 2ŷ3 +ε and test

H0: 𝛿1=0, 𝛿2 = 0 using F~F2,n-k-3 or 

LM~𝜒2(2).



Stationary process

 A stationary process is a stochastic 
process whose joint probability 
distribution does not change when shifted 
in time. 

 Parameters such as the mean and variance, 
if they are present, also do not change 
over time and do not follow any trends.

Solutions:

 Taking differences (Dickey-Fuller test)

 Trend-stationary processes



Question

“What should we do, if we fail 

to find an appropriate model 

that satisfy all tests?”



REVIEW



Linear regression

- dependent variable;

- independent variables;

- residuals.
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Assumptions

 Linearity - the Y variable is linearly 
related to the value of the X variable. 

 Independence of Error - the error 
(residual) is independent for each value of 
X.

 Homoscedasticity - the variation around 
the line of regression be constant for all 
values of X.

 Normality - the values of Y be normally 
distributed at each value of X.



Regression Modeling 

Steps 

 Define problem or question

 Specify model

 Collect data

 Do descriptive data analysis

 Estimate unknown parameters

 Evaluate model

 Use model for prediction 



QUESTIONS?



THANK YOU FOR 

YOUR ATTENTION!


